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Abstract—Signal processing modules working directly on en-
crypted data provide an elegant solution to application scenarios
where valuable signals must be protected from a malicious pro-
cessing device. In this paper, we investigate the implementation of
the discrete Fourier transform (DFT) in the encrypted domain, by
using the homomorphic properties of the underlying cryptosys-
tem. Several important issues are considered for the direct DFT,
the radix-2, and the radix-4 fast Fourier algorithms, including the
error analysis and the maximum size of the sequence that can be
transformed. We also provide computational complexity analyses
and comparisons. The results show that the radix-4 FFT is best
suited for an encrypted domain implementation in the proposed
scenarios.

I. I NTRODUCTION

Recent advances in signal processing technology create the
opportunity for a large variety of new applications ranging
from multimedia content production and distribution, to ad-
vanced healthcare systems for continuous health monitoring.
These developments raise several important issues concerning
the security of the digital contents to be processed, including
intellectual property rights management, authenticity, privacy,
and conditional access.

Currently available solutions for secure manipulation of
signals apply some cryptographic primitives in order to build
a secure layer on top of the signal processing modules. An
example of this approach is represented by the encryption
of compressed multimedia signals: the multimedia content is
first of all compressed through a state-of-the-art compression
scheme, and next encryption of the compressed bit stream is
carried out. Consequently, the bit stream must be decrypted
before the content can be decompressed and processed.

These solutions typically assume that the involved partiesor
devices trust each other, and thus cryptography is used onlyto
protect the data against third parties or to provide authenticity.
Unfortunately, this may not be sufficient in some applications,
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50139, Firenze, Italy (phone: +39 055 4796380, fax: +39 055 494569, e-
mail: {tiziano.bianchi, alessandro.piva}@unifi.it). Mauro Barni is with the
Dipartimento di Ingegneria dell’Informazione, Università di Siena,Via Roma
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since the owner of the data may not trust the processing
devices, or those actors that are required to manipulate them.
As a first example, let us consider a situation where a user (say
Alice) resorts to a continuous monitoring healthcare system to
analyze her medical/biological data in order to get a fast pre-
alert diagnosis helping her to stay healthy. Very likely she
will not trust the service provider that will be required to
analyze Alice’s data while they are encrypted. At the same
time, the service provider may want to keep its processing
algorithms secret since they represent the basis for its business.
As a second example, we may consider a situation where a
user wants to query a database (e.g. a database containing
biometric data) without revealing to the database owner (say
Bob) what he/she is looking for (again this necessity may be
due to privacy reasons). It is evident that the availabilityof
tools that allow to process an encrypted query would represent
a valuable help to solve this problem.

In the following we will refer to the above approach,
whereby signals are processed while they are encrypted, as
s.p.e.d. (signal processing in the encrypted domain).

Though processing encrypted signals may seem a
formidable, if not impossible task, a few approaches exist
that make s.p.e.d. possible. The majority of these approaches
concern content retrieval and content protection applications.
The interested reader can find an extensive review of these
secure signal processing applications in [1]. By neglecting
ad hoc solutions, that are suited to solve only particular
problems in very narrow scenarios, two general approaches
exist to process encrypted signals: the first one is based on
homomorphic encryption [2], [3], the second one relies on
multiparty computation (MPC) [4]–[6].

A cryptosystem is said to be homomorphic with respect to
an operation⋆ if there exists an operatorφ(·, ·) such that for
any two plain messagesa andb, we have:

D[φ(E[a], E[b])] = a ⋆ b (1)

whereE[·] (D[·]) denotes the encryption (decryption) operator.
It is evident that homomorphic encryption provides an elegant
way of performing at last a reduced set of operations by work-
ing on encrypted data. Among homomorphic cryptosystems,
additively homomorphic encryption plays a crucial role in
practical applications, since it provides a way of applyingany
linear operator in the encrypted domain.

The second approach to s.p.e.d. relies on MPC [4]. Heren
players want to compute the output of a functionf(·) with n
inputs, each of which is known to one of the players. A MPC
protocol permits to compute the output off without that the
players have to reveal their private inputs. It has been shown
[4] that, at least in principle, the output of any functionf can
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be computed securely through MPC; the problem however is
that MPC protocols are extremely complex since they may
require that several interactive rounds are carried out among
the players to compute the output off .

In this paper we focus on non-interactive s.p.e.d. Specif-
ically we focus on the representation problems that must
be solved in order to exploit homomorphic encryption for
processing encrypted signals.

The classical ways to represent signals are through floating
point or fixed point arithmetic. Unfortunately both floating
point and fixed point arithmetic are not suited for implemen-
tation in the encrypted domain through homomorphic encryp-
tion. As a matter of fact adding two floating point numbers
requires much more complex operations than simple addition:
first the numbers must be expressed in a form having the same
exponent, then the significands must be added and then the
exponent adjusted so that the significand of the result staysin
the [0.1, 1) range. Clearly these operations can not be carried
out in the encrypted domain by relying on homomorphic
encryption only, but some interactive protocol is required[7].
Similar considerations hold for fixed point arithmetic, where
after each addition (multiplication) the resulting numbermust
be truncated to avoid overflow and underflow errors1.

In this paper we focus on the above representation problem
in the framework of DFT/FFT computation in the encrypted
domain. In fact, DFT and FFT are very popular signal pro-
cessing tools, and hence it is very likely that they will have
to be implemented in s.p.e.d. applications. This is the case
for instance of a pattern recognition module operating on set
of frequency coefficients, a frequency-domain watermarking
system embedding the watermark in the encrypted domain
[8]–[10], or a filtering operation carried out in the frequency
domain2.

Specifically, we introduce a theoretical framework whereby
the signal representation problem can be analyzed and solved.
Several important issues are considered for the direct DFT,
the radix-2, and the radix-4 fast Fourier algorithms, including
the error analysis and the maximum size of the sequence that
can be transformed. We also provide computational complexity
analyses and comparisons. The results show that the radix-4
FFT is best suited for an encrypted domain implementation in
the proposed scenarios.

Despite the focus of the paper is on DFT/FFT implementa-
tion, the theoretical framework we developed is a very general
one and can be used in a wide variety of situations.

The rest of this paper is organized as follows. In Sec-
tion II the e-DFT (encrypted-DFT) is defined and the related
representation problem introduced. Section III reviews some
properties of homomorphic and probabilistic cryptosystems
and gives a summary of Paillier cryptosystem. In Section IV,
we introduce a suitable signal representation for the encrypted

1Given the current state of art in homomorphic encryption thereis no way
to compare or threshold two encrypted numbers. At the same time resorting
to MPC at this low level is unacceptably complex.

2It could be argued that when the DFT module is either at the beginning
or at the end of the processing chain, the DFT could be appliedto the signal
by the signal owner itself. However, this is not the case if the DFT is a
step of a much more complex processing chain, where the DFT is applied to
intermediate data.

domain. Section V is devoted to the analysis of the upper
bounds on the encrypted domain representation for different
DFT implementations, whereas Section VI takes into account
quantization errors. In Section VII, we derive the complexity
of different s.p.e.d. FFT algorithms (namely radix-2 and radix-
4 FFT). Finally, in Section VIII we propose some examples
of s.p.e.d. FFT designs, while some concluding remarks are
given in Section IX.

II. ENCRYTPTED DOMAIN - DISCRETEFOURIER

TRANSFORM (E-DFT)

The DFT of a sequencex(n) is defined as:

X(k) =

M−1∑

n=0

x(n)Wnk, k = 0, 1, . . . ,M − 1 (2)

whereW = e−j2π/M andx(n) is a finite duration sequence
with lengthM . Among the appealing properties of the above
transform one is that it can be implemented via fast algorithms,
noted as fast Fourier transforms (FFTs).

We will consider a scenario in which the transform proces-
sor is fed with a sample-wise encrypted version of the input
vector, that is

E[x] = (E[x(0)], E[x(1)], . . . , E[x(M − 1)]) . (3)

In order to make possible linear computations on encrypted
values, we will assume that the chosen cryptosystem isho-
momorphicwith respect to the addition, i.e., there exists an
operatorφ(·, ·) such that

D[φ(E[a], E[b])] = a+ b (4)

With such a cryptosystem is indeed possible to add two
encrypted values without first decrypting them. Moreover, it
is possible to multiply an encrypted value by a public integer
value by repeatedly applying the operatorφ(·, ·).

Another required property of the cryptosystem is that it
should beprobabilistic, or semantically secure, that is, given
two encrypted values it should not be possible to decide
if they conceal the same value. This is fundamental, since
the alphabet to which the input samples belong is usually
limited, and a non-semantically secure cryptosystem would
disclose a great amount of information about the statistical
distribution of the input signal. A widely known example of
a cryptosystem fulfilling both the above requirements is the
Paillier cryptosystem [11], for which the operatorφ(·, ·) is a
modular multiplication.

Since the DFT transform coefficients are public, the expres-
sion in (2) can be computed on an encrypted input vector by
relying on the homomorphic property, as will be shown in
Section IV. As we already mentioned, when the above idea is
applied in practice some issues need to be addressed.

First of all, both the input samples and the DFT coefficients
need to be represented as integer values. Since many practical
homomorphic cryptosystems (e.g., Paillier) are based on mod-
ular operations on a finite field/ring, the inputsx(n) and the
output valuesy(n) need to be correctly represented as integers
on an appropriate finite field. Here, by “correctly represented”
we mean that the actual value of a sample should always be
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recoverable from its finite field representation. For example, in
the case we are working onZN , the set of integers moduloN ,
for each sample we should have|x| ≤ (N − 1)/2; otherwise,
its magnitude will be lost due to the moduloN operations.

Secondly, FFT like algorithms should be applicable also in
the encrypted domain, thus permitting to achieve the same
computation savings achievable in the plain domain.

In the sequel, we will present a theoretical framework
wherein the above issues can be cast and solved. A convenient
signal representation for s.p.e.d. will be proposed, allowing
us to define both a s.p.e.d. DFT and a s.p.e.d. FFT. We will
analyze the quantization error introduced by the s.p.e.d. im-
plementation and the maximum size of the sequence that can
be transformed. Moreover, we will provide a computational
complexity analysis, taking into account the requirementsof
different s.p.e.d. scenarios.

III. H OMOMORPHIC AND PROBABILISTIC

CRYPTOSYSTEMS

One tool for signal processing in the encrypted domain is
represented by cryptosystems that allow to carry out some
basic algebraic operations on encrypted data by translating
them into corresponding operations in the plaintext domain.
The concept of privacy homomorphism was first introduced by
Rivest et. al. [2]: in this paper, the authors define privacy ho-
momorphisms as encryption functions which permit encrypted
data to be operated on without preliminary decryption of the
operands.

For an exact definition of a homomorphic cryptosystem,
let us first introduce some notations: given a set of possible
plain textsM, a set of cipher textsC and a key pair{pk, sk}
(public key and secret key), a public key encryption scheme
is a couple of functionsEpk : M → C,Dsk : C → M such
that, given a plaintextm ∈ M, Dsk(Epk(m)) = m and such
that, given a cipher textc ∈ C, it is computationally unfeasible
to determinem such thatEpk(m) = c, without knowing the
secret keysk.

According to the correspondence between the operation
in the ciphertext domain and the operation in the plaintext
domain, a cryptosystem can be additively homomorphic or
multiplicatively homomorphic: in this paper, we will focuson
the former.

An additively homomorphic cryptosystem allows to map
an addition in the plaintext domain to an operation in the
ciphertext domain, that usually is a multiplication. Given
two plaintextsm1 andm2, the following equalities are then
satisfied:

Dsk(Epk(m1) · Epk(m2)) = m1 +m2 (5)

and, as a consequence,

Dsk(Epk(m)a) = am (6)

wherea is a public integer and

Dsk(Epk(m1) · Epk(m2)
−1) = m1 −m2. (7)

Additively homomorphic cryptosystems allow to perform in
the encrypted domain additions, subtractions and multiplica-
tions with a known (non-encrypted) value. However, it is not

possible to perform divisions, since this operation could lead
to non integer values.

Another feature that we need is that the encryption scheme
does not encrypt two equal plain texts into the same cipher
text. More generally, given two encrypted values it should
not be computationally feasible to decide if they conceal the
same value or not. For this purpose, it is possible to define
a scheme where the encryption functionEpk is a function of
both the secret messagem and a random parameterr, such
that if r1 6= r2 no adversary can distinguishEpk(m1, r1)
from Epk(m2, r2), for any two secret messagesm1,m2.
Let c1 = Epk(m, r1) and c2 = Epk(m, r2), for a correct
behavior the scheme has to be designed in such a way that
Dsk(c1) = Dsk(c2) = m, that is the decryption phase is
deterministic, not depending on the random parameterr. A
scheme that satisfies the above property is commonly referred
to as probabilistic [3] or semantically secure.

Luckily, encryption schemes that satisfy both the homomor-
phic and probabilistic properties detailed above do exist.One
of the most known homomorphic and probabilistic schemes
is the one presented by Paillier in [11], and later modified by
Damg̊ard and Jurik in [12].

A. Paillier Cryptosystem

The cryptosystem described in [11], usually referred to
as Paillier cryptosystem, is based on the problem to decide
whether a number is anN -th residue moduloN2. This prob-
lem is believed to be computationally hard in the cryptography
community, and is linked to the hardness to factorizeN , if N
is the product of two large primes. For a complete description
of the Paillier cryptosystem we refer to the original paper
[11]. Here, we simply give the encryption and the decryption
procedures. The notation we use is the classic one, withZN

the set of the integer numbers moduloN , and Z
∗
N the set

of invertible elements moduloN , i.e. all the integer numbers
moduloN that are relatively prime withN .

1) Set-up: selectp, q big primes. The private key is the
least common multiple of(p − 1, q − 1), denoted asλ =
lcm(p − 1, q − 1). Let N = pq and g in Z∗

N2 an element of
order3 αN for someα 6= 0 (g = N+1 is usually a convenient
choice).(N, g) is the public key.

2) Encryption: let m < N be the plaintext, andr < N a
random value. The encryptionc of m is:

c = Epk(m, r) = gmrN mod N2

3) Decryption: let c < N2 be the ciphertext. The plaintext
m hidden inc is:

m = Dsk(c) =
L(cλ mod N2)

L(gλ mod N2)
mod N

whereL(x) = x−1
N . From the above equations, we can easily

verify that the Paillier cryptosystem is additively homomor-
phic, sinceEpk(m1, r1)Epk(m2, r2) = gm1+m2(r1r2)

N =
Epk(m1 +m2, r1r2).

3The order of an integera modulo N is the smallest positive integerk
such thatak = 1 mod N .
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IV. SIGNAL MODEL FOR THEENCRYPTEDDOMAIN

Let us consider a signalx(n) ∈ C, with x(n) = xR(n) +
jxI(n), xR,I ∈ R. In the following, we will assume that the
signal is bounded in amplitude, i.e.,|x(n)| ≤ 1, from which
|xR,I(n)| ≤ 1.

In order to processx(n) in the encrypted domain, the signal
values must be approximated by suitable integers. This is
accomplished by the following quantization process

s(n) = ⌈Q1x(n)⌋ = ⌈Q1xR(n)⌋+j⌈Q1xI(n)⌋ = sR(n)+jsI(n)
(8)

where⌈·⌋ is the rounding function andQ1 is a suitable scaling
factor. Fore the sake of simplicity, we will assume thatQ1 is an
integer. Based on the properties ofx(n), the quantized signal
will satisfy −Q1 ≤ sR,I(n) ≤ Q1.

In the following, we will consider the encryption ofs(n)
as the separate encryption of bothsR(n) and sI(n), i.e.,
E[s(n)] = {E[sR(n)], E[sI(n)]}. Hence, if the cryptosystem
encrypts integers moduloN we need a one-to-one mapping
betweenzR,I(n) = sR,I(n) mod N andsR,I(n), so that we
can always recover the correct value ofsR,I(n) from zR,I(n).
This can be achieved by imposingN ≥ 2Q1 + 1, so that

sR,I(n) =

{

zR,I(n) if zR,I(n) < N/2

zR,I(n) −N if zR,I(n) > N/2
(9)

The coefficientsWnk in (2) can be quantized using the same
strategy as above. In particular, we define

C(u) = ⌈Q2W
u⌋ = ⌈Q2 cos(2πu/M)⌋−j⌈Q2 sin(2πu/M)⌋ = CR(u)+jCI(u)

(10)
whereQ2 is the DFT coefficient scaling factor. Thanks to the
properties ofW , we have−Q2 ≤ CR,I(u) ≤ Q2.

Based on the definitions above, the integer approximation
of the DFT is defined as

S(k) =
M−1∑

n=0

C(nk)s(n), k = 0, 1, . . . ,M − 1. (11)

Since the above equation requires only integer multiplications
and integer additions, it can be evaluated in the encrypted
domain by relying on homomorphic properties. However,
the s.p.e.d. implementation of both complex additions and
complex multiplications should be considered. The imple-
mentation of a complex addition is trivial. As to a complex
multiplication, two implementations can be considered [13],
either requiring four real multiplications and two real addi-
tions, sC = {sRCR − sICI , sRCI + sICR}, or three real
multiplications and three real additions,sC = {(sR+sI)CR−
sI(CR +CI), (sR + sI)CR − sR(CR −CI)}. If the inputs are
encrypted with the Paillier cryptosystem, when implemented
in the encrypted domain such implementations become

E[s]C(1) ,
{
E[sR]CRE[sI ]

−CI , E[sR]CIE[sI ]
CR

}
(12)

E[s]C(2) ,
{
E[Z]E[sR]−C+ , E[Z]E[sI ]

−C−

}
(13)

where E[Z] = (E[sR]E[sI ])
CR , C+ = CR + CI , C− =

CR − CI and all computations are carried out moduloN2.

For example, if we use (12) the DFT in the encrypted domain
can be evaluated as

E[S(k)] ,

M−1∏

n=0

E[s(n)]
C(nk)
(1)

=

{
M−1∏

n=0

E[sR(n)]CR(nk)E[sI(n)]−CI(nk),

M−1∏

n=0

E[sR(n)]CI(

(14)

for k = 0, 1, . . . ,M − 1.

V. UPPERBOUNDS AND MAGNITUDE REQUIREMENTS

The computation of the DFT using (11) requires two
problems to be tackled. The first one is that there will be
a scaling factor betweenS(k) and the desired valueX(k).
The second one is that, in order to implement (11) using a
cryptosystem which encrypts integers moduloN , one must
ensure that the one-to-one mapping in (9) still holds forS(k)
mod N . Hence, according to the proposed model, one has to
find an upper boundQS on S(k) such that|SR,I(k)| ≤ QS ,
and verify thatN ≥ 2QS + 1.

In the following we will show that, irrespective of the DFT
implementation,S(k) can always be expressed as

S(k) = KX(k) + ǫS(k) (15)

whereK is a scale factor depending on the particular imple-
mentation, whereasǫS(k) takes into account the propagation
of the quantization error.

Based on the above equation, the desired DFT output can
be obtained as̃X(k) = S(k)/K. As to the upper bound, we
have|S(k)| ≤ K|X(k)|+ |ǫS(k)|. Hence, for allk we obtain

|S(k)| ≤ ⌊MK + ǫS,max⌋ , QS (16)

whereǫS,max is a suitable upper bound onǫS(k) and we used
|X(k)| ≤M .

The value ofK and ǫS,max depends on the scaling factors
Q1 andQ2 and on the particular implementation of the DFT.
These issues will be discussed in the following sections.

A. Direct Computation

Let us express the quantized samples in (8) and the quan-
tized coefficients in (10) ass(n) = Q1x(n) + ǫs(n) and
C(u) = Q2W

u+ǫW (u), respectively, whereǫs(n) andǫW (u)
are the quantization errors. If the DFT is computed directly
by applying (11), then we have

S(k) = Q1Q2X(k)+

M−1∑

n=0

[
Q1x(n)ǫW (nk) +Q2ǫs(n)Wnk + ǫs(n)ǫW

(17)
The scaling factor in (15) is thenK = Q1Q2. As to the upper
boundQS given by equation (16), due to the properties of the
rounding function,|ǫs,W (n)| ≤ 1/

√
2. Hence|s(n)| ≤ Q1 +

1/
√

2, |C(u)| ≤ Q2 + 1/
√

2 and, after simple manipulations,

|S(k)| ≤M

(

Q1Q2 +
Q1√

2
+
Q2√

2
+

1

2

)

(18)

from which we deriveQS = MQ1Q2 + ⌊Q1/
√

2+Q2/
√

2+
1/2⌋.
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1) Real-Valued Signals:In the case of the DFT of a real-
valued signal, the direct DFT computation can be expressed
as

S(k) =

M−1∑

n=0

CR(nk)s(n)+j

M−1∑

n=0

CI(nk)s(n), k = 0, 1, . . . ,M−1.

(19)
From the properties of boths(n) andCR,I(u), it is evident
that |s(n)CR,I(u)| ≤ Q1Q2. Therefore, both the real and
the imaginary part of the integer DFT values will satisfy
|SR,I(k)| ≤ QS = MQ1Q2. This upper bound is lower than
in the complex-valued case. However, in the case of a FFT
algorithm this applies only for the first stages, since a generic
stage of the FFT will consider a vector of complex valued
samples. It is also worth noting that real-valued signals are
usually processed by means of a half-length complex FFT
[14], since this leads to a sensible reduction of the complexity.
Hence, in the following only the complex-valued case will be
considered.

2) Bounds on Complex Multiplications:The bound in (18)
does not take into account the intermediate computations of
a complex multiplication. This is not a problem in the case
of (12), since|sR,ICR,I | ≤ |sC|, that is, the intermediate
values are bounded by the final value. However, in the case
of (13) we have|sR + sI | ≤ |s|

√
2 and |CR ± CI | ≤

√
2,

i.e., the intermediate values may exceed the final values. In
order to cope with this behavior, the bound in (18) should
be multiplied by a factor

√
2 whenever (13) is used. For the

sake of simplicity, the upper bounds in the following sections
will be derived under the hypothesis that (12) is used. The
corresponding upper bounds in the case of (13) can be obtained
by multiplying by

√
2.

B. Decimation in Time Radix-2 FFT

This algorithm is applied whenM = 2ν and allows the DFT
to be computed inν stages each requiringM/2 complex mul-
tiplications. At each stage, a pair of coefficients is obtained as
a linear combination of the corresponding pair of coefficients
computed at the previous stage, using the followingbutterfly
structure

X(t+1)(k0) = X(t)(k0) +WuX(t)(k1) (20)

X(t+1)(k1) = X(t)(k0) −WuX(t)(k1) (21)

where the indexesk0, k1 and the exponentu depend on the
particular stage [15]. The computation of the above butterfly
can be performed in the encrypted domain by applying the
proposed model, yielding

S(t+1)(k0) = Q2S
(t)(k0) + C(u)S(t)(k1) (22)

S(t+1)(k1) = Q2S
(t)(k0) − C(u)S(t)(k1). (23)

Note that the multiplication byQ2 is required in order to add
(or subtract) integers which are related to the corresponding
complex coefficients by the same scale factor. Hence, the
integer implementation of the FFT algorithm requiresM
integer multiplications at each stage.

As to the upper bound analysis, the two branches of the
butterfly are equivalent. Without loss of generality, let uscon-
sider the first branch. If we expressS(t)(k0) = K(t)X(t)(k0)+

ǫ
(t)
S (k0), then we have

S(t+1)(k0) =Q2K
(t)

(

X(t)(k0) +WuX(t)(k1)
)

+Q2

(

ǫ
(t)
S (k0) +Wuǫ

(t)
S (k1)

)

+K(t)X(t)(k1)ǫW (u) + ǫ
(t)
S (k1)ǫW (u)

(24)

from which we derive the following recursive relations

K(t+1) =Q2K
(t) (25)

ǫ
(t+1)
S (k0) =Q2

(

ǫ
(t)
S (k0) +Wuǫ

(t)
S (k1)

)

+K(t)X(t)(k1)ǫW (u) + ǫ
(t)
S (k1)ǫW (u).

(26)

At the first stageS(0)(n) = s(ñ) = Q1x(ñ) + ǫs(ñ), where
ñ indicatesn in bit reverse order, so that the recursion starts
with K(0) = Q1 and ǫ(0)S (k0) = ǫs(k̃0). By using the initial
conditions in (26), it is easy to derive the scale factor asK =
K(ν) = Q1Q

ν
2 .

As to the evaluation of the final upper bound, we consider
an equivalent recursive relation on an upper bound of the
quantization error represented in (26), given as

|ǫ(t+1)
S | ≤

(

2Q2 +
1√
2

)

|ǫ(t)S | + 2t

√
2
K(t). (27)

By using the initial condition|ǫ(0)S | ≤ 1√
2

in (27), the upper
bound on the final quantization error can be expressed as

|ǫ(ν)
S | ≤ 1√

2

(

2Q2 +
1√
2

)ν

+

ν−1∑

l=0

2ν−1−l

√
2

Q1Q
ν−1−l
2

(

2Q2 +
1√
2

)l

.

(28)
However, the above upper bound does not take into account the
properties of the twiggle factorsWu, which in particular cases
may be quantized with smaller quantization errors than the
upper bound|ǫW | ≤ 1/

√
2 or even without any quantization

error. In particular, at the first stage we haveWu = 1, whereas
at the second stage we haveWu = {1, j}. In both cases, no
integer multiplication is required, and the butterflies canbe
modified so that no scaling factor is introduced. Therefore,
K(2) = Q1 and by using (26), it is easy to derive the scale
factor asK = K(ν) = Q1Q

ν−2
2 .

As to the upper bound, in the case of the first two stages the
expression in (27) simplifies as|ǫ(t+1)

S | ≤ 2|ǫ(t)S |, sinceǫW =

0. Hence, by using as initial condition|ǫ(2)S | ≤ 4/
√

2 in (27)
(since |ǫ(0)S | ≤ 1/

√
2), the upper bound on the quantization

error can be expressed as

|ǫ(ν)
S | ≤ 4√

2

(

2Q2 +
1√
2

)ν−2

+
ν−3∑

l=0

2ν−1−l

√
2

Q1Q
ν−3−l
2

(

2Q2 +
1√
2

)l

= ǫS,R2,max, ν >

(29)

from which we derive the final upper bound onS(k) asQS =
MQ1Q

ν−2
2 + ⌊ǫS,R2,max⌋.
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C. Decimation in Time Radix-4 FFT

This algorithm can be employed whenM = 4µ and
allows the DFT to be computed inµ stages each requiring
3M/4 complex multiplications. The rationale of the radix-4
algorithm is that anM -point DFT can be evaluated as a linear
combination of fourM/4-point DFTs. Using this strategy,
at each stage four new coefficients are obtained as a linear
combination of four coefficients computed at the previous
stage, using the followingradix-4 butterfly[16]

X(t+1)(kl) =

3∑

i=0

X(t)(ki)W
ui(−j)il, l = 0, . . . , 3. (30)

Without loss of generality, the upper bound can be evaluated
by considering the integer version of the first branch in the
butterfly, that is

S(t+1)(k0) = Q2S
(t)(k0)+C(u)S(t)(k1)+C(2u)S(t)(k2)+C(3u)S(t)(k3).

(31)
By using the same model as with the radix-2 case, the
following recursive relations can be derived

K(t+1) =Q2K
(t) (32)

|ǫ(t+1)
S | ≤

(

4Q2 +
3√
2

)

|ǫ(t)S | + 3
4t

√
2
K(t). (33)

Moreover, at the first stage of the radix-4 FFT algorithmWu =

1, so that the recursion begins withK(1) = Q1 and |ǫ(1)S | ≤
4/
√

2. The scale factor is given asK = K(µ) = Q1Q
µ−1
2 ,

whereas the quantization error upper bound is

|ǫ(µ)
S | ≤ 4√

2

(

4Q2 +
3√
2

)µ−1

+

µ−2
∑

l=0

4µ−1−l

√
2

Q1Q
µ−2−l
2

(

4Q2 +
3√
2

)l

= ǫS,R4,max

(34)

from which we derive the upper bound onS(k) as QS =
MQ1Q

µ−1
2 + ⌊ǫS,R4,max⌋.

The parameters determining the upper bounds for the dif-
ferent DFT implementations are summarized in Table I.

VI. ERRORANALYSIS

The effects of finite precision arithmetic on DFT/FFT com-
putation have been extensively investigated in the literature
[17]–[19]. However, the encrypted domain implementation of
the DFT introduces some important differences with respectto
the classical fixed point case. Since there is no rescaling after
multiplication (as we said we can not rescale the encrypted
values due to the limited set of operations made available by
homomorphic encryption), there is no computational noise,
which is one of the most relevant noise sources in fixed point
implementations. Hence, the error introduced by the proposed
DFT/FFT is only due to the quantization of the twiddle factors.

In order to estimate the overall quantization error on the
DFT values, the noise-to-signal ratio (NSR) will be evaluated.
We will assume that bothǫs(n) andǫW (u) are i.i.d. variables
with zero mean and varianceσ2

q and σ2
W,q, respectively.

Although ǫW (u) is deterministic, this will produce a simple
estimate of the quantization noise.

As to the input signal, its NSR can be estimated as

η =
σ2

q

Q2
1σ

2
x

(35)

whereσ2
x indicates the signal power.

If we consider the DFT/FFT computation, the output NSR
can be estimated as

η̃ =
σ2

ǫS

K2Mσ2
x

(36)

where σ2
ǫS

is the variance ofǫS(k). In the case of the
direct DFT computation, by relying on equation (17) and
neglecting the termsǫs(n)ǫW (nk), we can estimateσ2

ǫS
≈

MQ2
1σ

2
xσ

2
W,q +MQ2

2σ
2
q . Hence, it is easy to derive

η̃D = η +
σ2

W,q

Q2
2

. (37)

In the case of a radix-2 FFT, the variance of the error at
the tth stage can be recursively approximated by relying on
equation (26) as

σ2

ǫ
(t+1)
S

≈ 2Q2
2σ

2

ǫ
(t)
S

+ 2tσ2
xσ

2
W,q(K

(t))2. (38)

If we set the initial conditions σ2

ǫ
(2)
S

= 4σ2
q and

K(2) = Q1, then we haveσ2
ǫS

= 2νQ
2(ν−2)
2 σ2

q + (ν −
2)2ν−1σ2

xσ
2
W,qQ

2
1Q

2(ν−3)
2 . Therefore, the NSR can be ex-

pressed as

η̃R2 = η +
ν − 2

2

σ2
W,q

Q2
2

. (39)

Finally, in the case of a radix-4 FFT the variance of the
error at thetth stage can be recursively approximated in a
similar way as

σ2

ǫ
(t+1)
S

≈ 4Q2
2σ

2

ǫ
(t)
S

+ 3 · 4tσ2
xσ

2
W,q(K

(t))2 (40)

and, since the initial conditions areσ2

ǫ
(1)
S

= 4σ2
q andK(1) =

Q1, the error at the last stage isσ2
ǫS

= 4µQ
2(µ−1)
2 σ2

q + 3(µ−
1)4µ−1σ2

xσ
2
W,qQ

2
1Q

2(µ−2)
2 . Therefore, the NSR is given by

η̃R4 = η +
3(µ− 1)

4

σ2
W,q

Q2
2

. (41)

A. Comparison with Plaintext Implementation

Since the value ofQ1, and henceη, will be fixed by the
properties of the input signal, the above formulas permit to
evaluate the degradation introduced on the encrypted DFT
coefficients as a function ofQ2. A fair design criterion could
be that of choosing a value ofQ2 which yields a similar
degradation with respect to that introduced by a plaintext FFT
implementation.

In the following, comparisons will be made using a plaintext
radix-2 FFT. Considering other plaintext FFTs yields similar
results. According to the way a plaintext FFT is implemented,
two cases need to be analyzed:
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TABLE I
SCALING FACTOR K AND UPPER BOUNDQS FOR DIFFERENT S.P.E.D. DFT IMPLEMENTATIONS.

K QS

Direct Q1Q2 MQ1Q2 + ⌊Q1/
√

2 + Q2/
√

2 + 1/2⌋
DIT radix-2 (M = 2ν ) Q1Qν−2

2
MQ1Qν−2

2
+ ⌊ 4

√

2

(

2Q2 + 1
√

2

)ν−2

+
∑ν−3

l=0

2
ν−1−l
√

2
Q1Qν−3−l

2

(

2Q2 + 1
√

2

)l
⌋

DIT radix-4 (M = 4µ) Q1Qµ−1

2
MQ1Qµ−1

2
+ ⌊ 4

√

2

(

4Q2 + 3
√

2

)µ−1

+
∑µ−2

l=0

4
µ−1−l
√

2
Q1Qµ−2−l

2

(

4Q2 + 3
√

2

)l
⌋

1) Fixed point implementation: if a plaintext radix-2 FFT
is implemented on a fixed point hardware with registers
having b2 bits and scaling is performed at each stage,
an equivalent encrypted domain implementation should
satisfy η̃ − η ≤ 4M · 2−2b2/3σ2

x [15], whereσ2
x is the

power of the input signal, assumed white. If we assume
a uniformly distributed quantization error on the DFT
coefficients, i.e.,σ2

W,q = 1/6, we have

Q2 ≥







σx · 2b2−ν/2−3/2 DFT

σx

√
ν − 2 · 2b2−ν/2−2 radix-2 FFT

σx

√

3ν/2 − 3 · 2b2−ν/2−5/2 radix-4 FFT
(42)

where we have assumedν = 2µ. As a consequence, the
s.p.e.d. implementation will require in the worst case
n2 = log2Q2 ≈ b2−ν/2+0.5 log2 ν bits for quantizing
the twiddle factors, i.e., we save approximatelyν/2 bits
with respect to a plaintext fixed point implementation.

2) Floating point implementation: in the case of a plain-
text radix-2 FFT implementation on a floating pointing
hardware usingf2 bits for the fractional part, the NSR
bound is given bỹη − η ≤ 2ν · 2−2f2/3 [15]. Hence

Q2 ≥







√

1/4ν · 2f2 DFT
√

(ν − 2)/8ν · 2f2 radix-2 FFT
√

(3ν/2 − 3)/16ν · 2f2 radix-4 FFT.

(43)

In this case, the quantization of the twiddle factors in the
s.p.e.d. implementation requires approximately the same
number of bits as the fractional part of the floating point
registers.

VII. C OMPLEXITY ANALYSIS

The complexity of the proposed DFT implementation in the
encrypted domain depends on several parameters which are
related to the used cryptosystem, its homomorphic properties,
to the input signal, and the desired NSR level.

For the sake of simplicity, in this paper we will assume
that a Paillier cryptosystem or one of its extensions are used.
Hence, each addition between plaintexts will be translatedinto
a modular multiplication between cyphertexts, and each mul-
tiplication between plaintexts will be translated into a modular
exponentiation of a cyphertexts to a plaintext. Moreover, an
encrypted subtraction requires a modular division, which is
usually more complex than a modular multiplication [20],
[21]. In the following, we will consider an implementation
of subtractions requiring one modular multiplication and one
modular inversion. The same holds for exponentiations to
negative exponents, usually implemented as(a−e)−1 mod n.

TABLE II
COMPUTATIONAL COMPLEXITY OF S.P.E.D. FFT ALGORITHMS: A

COMPLEX MULTIPLICATION IS IMPLEMENTED THROUGH FOUR REAL

MULTIPLICATIONS .

radix-2 radix-4 DFT

MEs 3M log2 M − 6M 7

4
M log2 M − 7

2
M 4M2

MMs 3M log2 M − 2M 11

4
M log2 M − 3

2
M 4M2 − 2M

MIs 3M log2 M − 4M 9

4
M log2 M − 5

2
M 2M2

As a result, the complexity will be evaluated as the number
of modular exponentiations (ME), modular multiplications
(MM), and modular inversions (MI) which are required for
implementing the DFT/FFT algorithms in the encrypted do-
main.

The DFT/FFT algorithms are based on complex-valued
arithmetic. Hence, the complexity of a complex addition, a
complex subtraction and a complex multiplication have to be
translated into ME, MM, and MI. As to a s.p.e.d. complex
addition, it always requires two MMs, while the complexity
of a complex subtraction is two MMs and two MIs. As to a
complex multiplication, we consider the two implementations
in (12)-(13), either requiring four MEs, two MMs and one MI,
or three ME, three MMs and two MIs. Moreover, if we assume
that the sign of the multipliers is uniformly distributed, either
two additional MIs or one and a half additional MIs should
be considered on the average. Finally, if a complex value is
multiplied by a real value (rescaled) the complexity is always
two MEs and one MI on the average.

The complexity of the direct DFT is simplyM2 complex
multiplications andM(M − 1) complex additions. The com-
plexity of radix-2 can be derived as follows. Each stage of the
radix-2 FFT, except the first two stages, requiresM/2 complex
multiplications plusM/2 rescalings of complex values when
implemented in the encrypted domain. Moreover, each stage
requires alsoM/2 complex additions andM/2 complex
subtractions. A similar procedure can be used to derive the
complexity of the encrypted radix-4 FFT. In this case each
stage, except the first stage, requires3M/4 complex multi-
plications plusM/4 rescalings of complex values. Moreover,
each radix-4 stage requires alsoM complex additions andM
complex subtractions. The complexity results for the different
algorithms in terms of MEs, MMs and MIs are summarized
in Tables II and III.

A remark about the encrypted DFT/FFT complexity regards
the different weight of the different modular operations. If
n2 = ⌈log2Q2⌉, a modular exponentiation will require on
the average3n2/2 modular multiplications. Hence, in several
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TABLE III
COMPUTATIONAL COMPLEXITY OF S.P.E.D. FFT ALGORITHMS: A

COMPLEX MULTIPLICATION IS IMPLEMENTED THROUGH THREE REAL

MULTIPLICATIONS .

radix-2 radix-4 DFT

MEs 5

2
M log2 M − 5M 11

8
M log2 M − 11

4
M 3M2

MMs 7

2
M log2 M − 3M 25

8
M log2 M − 9

4
M 5M2 − 2M

MIs 13

4
M log2 M − 9

2
M 39

16
M log2 M − 23

8
M 9

2
M2

practical cases the cost of the modular multiplications is
negligible. This may not hold true in the case of the modular
inversions, whose complexity is in general higher than that
of a modular multiplication. Hence, the choice of the most
convenient implementation between the four multiplication
scheme and the three multiplication scheme will depend on
the actual implementation of a modular inversion/division.

When the modulus used by the cryptosystem remains the
same independently of the implementation, the above esti-
mates can be directly compared and the results are similar
to the classical case. However, in order to maintain the same
value ofN , the maximum allowable value ofQ2 is reduced
in the case of the FFT algorithms. Since there can be some
applications in which this may not be acceptable because of
the requirements on the quantization noise, the analysis ofthe
overall complexity is strongly dependent on the actual values
of Q1 andQ2.

VIII. P RACTICAL EXAMPLES

As shown in the previous sections, the choice of the
parameters of the DFT to be implemented in the encrypted
domain depends on several aspects, including the constraints
imposed by the cryptosystem, the required SNR, and the
complexity of the implementation. The aim of this section
is to provide design criteria which take into account the
different issues raised by the s.p.e.d. DFT. First, we will try
to identify some typical scenarios that can be encountered
in practical applications. Therefore, we will show how the
proposed analysis allows us to assess which s.p.e.d. DFT
algorithm is more suitable for a particular scenario. In the
derivation of such criteria, the analysis made in the previous
sections has a crucial role, since it allows us to give general
rules for the choice of the s.p.e.d. DFT parameters, which will
apply also in more general scenarios.

We will assume that each encrypted domain implementation
fulfills the same requirements in terms of input and output
NSR as the plaintext version. Moreover, for the sake of
simplicity we will assume that bothQ1 andQ2 are powers
of two, i.e., Q1 = 2n1 and Q2 = 2n2 . Finally, we will
indicate the bit length of the modulus used by Paillier as
nP = ⌈log2N⌉. For security reasons, recent applications
usually requiresnP ≥ 1024.

In a non-encrypted domain (plaintext) implementation of
the DFT, different scenarios may arise, since both the inputs
and the twiddle factors in the DFT/FFT implementation may
be either fixed point or floating point numbers. In our analysis,
we will consider the following cases:

• Fixed point inputs: if the input signal is quantized using
b1 bits, its values can be directly mapped onto integer
values in the interval[−2b1−1, 2b1−1 −1], so that we can
assumen1 = b1 − 1;

• Floating point inputs: in order to preserve the whole
dynamic of the normalized floating point representation,
one should be able to represent values from±2−2c1−1−2

to±22c1−1

, wherec1 is the number of bit of the exponent.
Unless some information about the properties of the input
signal are known, this requiresn1 = 2c1 − 2;

• Fixed point implementation: by usingσx ≤ 1 andν ≥ 3,
a choice satisfying (42) for all implementations isQ2 ≥√

2ν · 2b2−ν/2−5/2 or, equivalently,n2 ≥ b2 − ν/2 +
(log2 ν)/2 − 2. If we assumeν ≤ 32, we can setn2 =
⌈b2 − ν/2 + 1/2⌉;

• Floating point implementation: a choice satisfying (43)
for all implementations and all values ofν isQ2 ≥ 1

22f2 ,
from which n2 = f2 − 1;

A. Implementation Constraints

One of the main problems of an implementation in the
encrypted domain is itsfeasibility. Consider a scenario in
which a set of encrypted signals must undergo different
processing tasks. It is not realistic to adapt the parameters
of the cryptosystem according to the processing task, mainly
because this would produce a huge amount of encrypted data,
and encrypting data with an homomorphic cryptosystem is
usually an expensive procedure. In such a scenario, it is
reasonable to assume that the signals are encrypted once, and
that each processing task employs the same set of encrypted
data. Therefore, each processing task must rely on an feasible
implementation, i.e., an implementation satisfying the require-
ments on the modulus.

Given M = 2ν , Q1, andQ2, in order to ensure that no
wrap-around occurs in the internal computations the modulus
of the cryptosystem must satisfy

N ≥ 2 (2νQ1Q
α
2 + ξ) + 1 (44)

where we can haveα = 1 (DFT), α = ν − 2 (radix-2) or
α = ν/2 − 1 (radix-4), andξ can be obtained from equation
(29), (34) or (18). Considering practical choices ofQ1 and
Q2, it is safe to assumeξ < 2νQ1Q

α
2 −1/2, so that the above

bound is satisfied by requiring

nP ≥ ν + n1 + αn2 + 3. (45)

By using the above relationship, it is easy to assess whethera
particular FFT can be implemented by relying on the minimum
modulus (and, hence, on a standard Paillier implementation)
or it requires an ad-hoc cryptosystem, e.g. as a function ofν.

According to the considered scenario, one can choose the
convenient values ofn1 and n2 and substitute them into
(45) in order to assess which implementation is feasible. In
Fig. 1, we show the minimumn required by four different
scenarios characterized by fixed point inputs. If the numberof
FFT points is not very high (above219), in all the scenarios
the encrypted FFT can be implemented relying on the given
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Fig. 1. Minimum value ofnP = ⌈log2 N⌉ as a function ofν = log2 M
for four different scenarios considering fixed point inputs: a) DFT; b) radix-2
FFT; c) radix-4 FFT. The straight line corresponds tonP = 1024. f2 = 23

corresponds to IEEE 754 single precision,f2 = 52 corresponds to IEEE 754
double precision.
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Fig. 2. Minimum value ofnP = ⌈log2 N⌉ as a function ofν = log2 M for
three different scenarios considering floating point inputs: a) DFT; b) radix-2
FFT; c) radix-4 FFT. The straight line corresponds tonP = 1024. c1 = 8

andf2 = 23 correspond to IEEE 754 single precision,c1 = 11 andf2 = 52

correspond to IEEE 754 double precision.
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modulus. The only exception is given by the radix-2 imple-
mentations using high precision coefficients, which require an
extended modulus in order to cope with a number of points
greater than219. In Fig. 2, we show the minimumnP required
by three different scenarios characterized by floating point
inputs. As in the previous example, the radix-2 implementation
with single precision inputs requires an extended modulus
only when using double precision coefficients andM > 216.
The situation is quite different in the case of double precision
inputs: due to the very high number of bits used to represent
the input samples each implementation would require an
extended modulus. Note that the radix-4 implementation can
be used withnP = 1024 even if the number of DFT points
grows very large. However, aboveM = 230 even the radix-
4 implementation becomes no more feasible. Hence, if some
processing is required withM > 230 (a possible example is
the processing of multidimensional signals) one has to resort
to an alternative implementation (for example, the direct DFT)
at the cost of a greater complexity.

B. Complexity Comparisons

Another important aspect of an encrypted domain im-
plementation is its computational complexity. When all the
implementations can be used relying on the same modulus,
one can simply compare the number of modular operations
required by the different approaches. However, also a different
scenario can be taken into consideration, in which the modulus
of the cryptosystem is set to the minimum value required by a
particular implementation. Since the cost of a modular opera-
tion depends on the modulus size [22], [23], a natural question
is whether a fast algorithm requiring a higher modulus size
(i.e., the FFT) can be less efficient than a naive implementation
requiring a lower modulus size (i.e., the direct DFT).

In order to make a complexity comparison, we made the
following simplifying assumptions: 1) the cost of the algorithm
is dominated by the number of exponentiations; 2) the cost
of a modular exponentiation (moduloN2

min = 22nP,min ) is
modeled asCE = 1.5n2(2nP,min)2κ [24], whereκ can be
interpreted as the cost of a bit operation (bit op).

Given the above hypotheses, the complexity of the different
implementations can be expressed as

CDFT = γDFT 22νn2n
2
p,min,DFT bit ops (46)

CR2 = γR2(ν − 2)2νn2n
2
p,min,R2 bit ops (47)

CR4 = γR4(ν − 2)2νn2n
2
p,min,R4 bit ops (48)

wherenp,min,DFT = (ν + n1 + n2 + 3), np,min,R2 = (ν +
n1 + n2(ν − 2) + 3) and np,min,R4 = (ν + n1 + n2(ν −
2)/2 + 3), and the coefficientsγDFT , γR2, γR4, depend on
the implementation of the complex multiplications. It can be
demonstrated that

CR4 < CR2 < CDFT ∀ν ≥ 3; ∀n1, n2 ≥ 0; (49)

irrespective of the implementation of the complex multiplica-
tions. A detailed proof is given in Appendix A.

As an example in the case of a practical implementation,
the complexity of the proposed FFTs is compared in Fig. 3,
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Fig. 3. Number of bit operations for three different s.p.e.d.DFT imple-
mentations, according to (46)-(48): a)n1 = 7, n2 = ⌈31 − ν/2 + 1/2⌉
(corresponding to 8-bit fixed point inputs and 32-bit fixed point coefficients);
b) n1 = 254, n2 = 51 (corresponding to single precision floating point
inputs and double precision floating point coefficients).

assuming four real multiplications for each complex multipli-
cation. Even if both FFTs are obliged to use a large modulus
size, their complexity is always well below that of a direct
DFT. In this scenario, the radix-4 algorithm is always the best
one for what concerns the complexity, irrespective of the other
parameters.

IX. CONCLUDING REMARKS

We have investigated the implementation of the DFT on a
vector of encrypted samples relying on the homomorphic prop-
erties of the underlying cryptosystem. The relations between
the maximum allowable DFT size and the modulus of the
cryptosystem, the DFT/FFT implementation, and the required
precision have been derived. The results have shown that
the noise introduced by a s.p.e.d. implementation is usually
smaller than in a classical fixed point implementation and
comparable to a floating point one. Also the computational
complexities of the different approaches have been derivedand
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compared, taking into account the constraints of the s.p.e.d.
implementation. We considered a first scenario in which the
available cryptosystem is fixed and a second scenario in which
the parameters of the cryptosystem may be adapted to the
requirements of the FFT. The results demonstrates that the
radix-4 FFT is best suited for both scenarios.

Our approach gives useful design criteria for the implemen-
tation of s.p.e.d. modules and suggests several other issues to
be addressed in future research on s.p.e.d. topics. For instance,
an interesting open question is the tradeoff between feasibility
and complexity, i.e., the comparison between feasible but
less efficient implementations and efficient but sometimes
unfeasible ones. Other topics needing further researcher are the
analysis of s.p.e.d. FFT algorithms having radix greater than
four, the analysis of mixed radix and split radix algorithms,
and the hardware issues in practical implementations.

APPENDIX

PROOF OFEQUATION (49).

Consider the expressions of the complexity given in eqs.
(46), (47), and (48). In the following, we will consider the case
of four real multiplications for each complex multiplication,
i.e., γDFT = 24, γR2 = 18, and γR4 = 10.5. The case of
three real multiplications can be proved in a similar way. The
following lemmas hold:

Lemma 1:CR4 < CR2 ∀ν ≥ 3; ∀n1, n2 ≥ 0;
Proof: This is immediately proved by inspecting equa-

tions (47)-(48).
Lemma 2:CR2 < CDFT ∀ν ≥ 3; ∀n1, n2 ≥ 0;

Proof: Consider the functional

φ(ν, n1, n2) =
CR2

CDFT
ν ≥ 3; n1, n2 ≥ 0. (50)

Clearly, φ(ν, n1, n2) > 0 on the given domain. Moreover, at
the boundaries we have the following constraints:

lim
ν→∞

φ(ν, n1, n2) = 0;

lim
n1→∞

φ(ν, n1, n2) =
3(ν − 2)

2ν+2
< 1, ∀ν ≥ 3;

lim
n2→∞

φ(ν, n1, n2) =
3(ν − 2)3

2ν+2
< 1, ∀ν ≥ 3;

φ(ν, n1, n2)|ν=3 =
3

25
< 1;

φ(ν, n1, n2)|n2=0 =
3(ν − 2)

2ν+2
< 1, ∀ν ≥ 3;

As to the hyperplanen1 = 0, we have

φ(ν, n1, n2)|n1=0 =
3(ν − 2)

2ν+2

(
ν + n2(ν − 2) + 3

ν + n2 + 3

)2

= ψ(ν, n2).

Consider the partial derivative ofψ(ν, n2) with respect ton2:
we have

∂ψ(ν, n2)

∂n2
=

3(ν − 2)(ν + n2(ν − 2) + 3)

2ν+1(ν + n2 + 3)3
︸ ︷︷ ︸

κ(ν,n2)

(ν2−9) > 0, ∀ν > 3

(51)
since κ(ν, n2) > 0 on the domain ofφ(ν, n1, n2). Hence,
the maxima (and minima) ofψ(ν, n2) lie on the boundary

of the domain, from whichφ(ν, n1, n2)|n1=0 < 1, ∀ν ≥
3; ∀n1, n2 ≥ 0.

As to the interior of the domain, let us consider the partial
derivative ofφ(ν, n1, n2) with respect ton1: we have

∂φ(ν, n1, n2)

∂n1
=

3(ν − 2)(ν + n1 + n2(ν − 2) + 3)

2ν+1(ν + n1 + n2 + 3)3
︸ ︷︷ ︸

κ′(ν,n1,n2)

n2(3−ν) < 0,

(52)
sinceκ′(ν, n1, n2) > 0 on the given domain. Hence, also the
extrema ofφ(ν, n1, n2) lie on the boundary of the domain.
This implies

φ(ν, n1, n2) < 1, ∀ν ≥ 3; ∀n1, n2 ≥ 0

which demonstrates the lemma.
The proof of equation (49) follows from the above two

lemmas.
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