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Abstract—Signal processing modules working directly on en- since the owner of the data may not trust the processing
crypted data provide an elegant solution to application scenarios devices, or those actors that are required to manipulate.the
where valuable signals must be protected from a malicious pro- As a first example, let us consider a situation where a usgr (sa

cessing device. In this paper, we investigate the implementation of ', . . .
the discrete Fourier transform (DFT) in the encrypted domain, by Alice) resorts to a continuous monitoring healthcare syste

using the homomorphic properties of the underlying cryptosys- analyze her medical/biological data in order to get a fast pr
tem. Several important issues are considered for the direct DFT, alert diagnosis helping her to stay healthy. Very likely she
the radix-2, and the radix-4 fast Fourier algorithms, including the  will not trust the service provider that will be required to
error analysis and the maximum size of the sequence that can be analyze Alice’s data while they are encrypted. At the same

transformed. We also provide computational complexity analyses fi th . id t to k it .
and comparisons. The results show that the radix-4 FFT is best Ime, the service provider may want 10 keep Its processing

suited for an encrypted domain implementation in the proposed @lgorithms secret since they represent the basis for iinéss
scenarios. As a second example, we may consider a situation where a

user wants to query a database (e.g. a database containing
| INTRODUCTION biometric data) without revealing to the database owney (sa
S _ Bob) what he/she is looking for (again this necessity may be

Recent advances in signal processing technology create §i@ 1o privacy reasons). It is evident that the availabitify
opportunity for a large variety of new applications ranging,q|s that allow to process an encrypted query would reptese
from multimedia content production and distribution, to- ad, \51yable help to solve this problem.
vanced healthcare systems for continuous health mongforin | the following we will refer to the above approach
These developments raise several important issues camgergyherehy signals are processed while they are encrypted, as
Fhe security of the d|g|tal contents to be process.ec.i,_ inetud s.p.e.d. (signal processing in the encrypted domain).
intellectual property rights management, authenticitivay, Though processing encrypted signals may seem a
and conditional access. . formidable, if not impossible task, a few approaches exist

Currently available solutions for secure manipulation Gf5t make s.p.e.d. possible. The majority of these appesach
signals apply some cryptographic primitives in order tddui concern content retrieval and content protection apptinat
a secure layer on top of the signal processing modules. Afe interested reader can find an extensive review of these
example of this approach is represented by the encryptiggcyre signal processing applications in [1]. By neglectin
of compressed multimedia signals: the multimedia contentdy hoc solutions, that are suited to solve only particular
first of all compressed through a state-of-the-art cOmBSS yrgplems in very narrow scenarios, two general approaches
scheme, and next encryption of the compressed bit streamyigst 1o process encrypted signals: the first one is based on
carried out. Consequently, the bit stream must be decryptﬁ&ﬂomorphic encryption [2], [3], the second one relies on
before the content can be decompressed and processed. yjtiparty computation (MPC) [4]-[6].

These solutions typically assume that the invol_ved padies a cryptosystem is said to be homomorphic with respect to
devices trust each other, and thus cryptography is usedtonlyy gperationx if there exists an operataf(-, -) such that for
protect the data against third parties or to provide auttient 5y two plain messagesandb, we have:

Unfortunately, this may not be sufficient in some applicagio
DIé(Ela], BH))] = axb M
XXXXX XXXXXXX XXXKX XXXK XXXXXXKKK XXXXK XXXKX XXXXK XXKX XXX XKXKXX ) ]
XXX XXXXXXX XXXXXX XXXX XXX XXXXXXX XX Xk xxaxxx xxxx xxooox whereE[] (D]-]) denotes the encryption (decryption) operator.
XXXXXX XX XXXXX XXXXXXX XX XXXXXXK XX XXXXXXK XXXXXXXXKXX XXX XXXXXXX It |S eVIdent that homomorphlc encryptlon prOVIdes an e%ga

XXXXXXXKXXXKKK XX XXXXXKKK XXXKXXX XXX XXXKX XXXXK XXXXX XXX XXXX f n . | d d f . b K
Tiziano Bianchi and Alessandro Piva are with the Dipartiredt Elet- way of performing at last a reduced set of operations by work-

tronica e Telecomunicazioni, Universitdi Firenze, Via S. Marta 3, |- ing on encrypted data. Among homomorphic cryptosystems,
50139, Firenze, Italy (phone: +39 055 4796380, fax: +39 098589, e- additively homomorphic encryption plays a crucial role in

mail: {tiziano.bianchi, alessandro.piM@unifi.it). Mauro Barni is with the ical licati . . id f I\é
Dipartimento di Ingegneria dell'Informazione, Univeesidi Siena,Via Roma practical applications, since It provides a way ot applyamy

56, 53100, Siena, ltaly (phone: + 39 0577 233601, fax: + 3970533602, linear operator in the encrypted domain.
e-mail: bamni@dii.unisi.it) The second approach to s.p.e.d. relies on MPC [4]. Here

The work described in this paper has been supported in pahigbifuropean . .
Commission through the IST Programme under Contract no 0342B&EB. players want to compute the output of a functipfi) with n

The information in this document reflects only the author'sveigis provided inputs, each of which is known to one of the players. A MPC
as-is-and-ho-guarantee or-warranty-is-given-that-the informagidit for any protocol permits to compute the output ﬁfwithout that the
particular purpose. The user thereof uses the informatiats able risk and . . .

liability. players have to reveal their private inputs. It has been show

Digital Object Identifier XXXXXXXXXXXXXXXX [4] that, at least in principle, the output of any functigrcan

www.manaraa.com



be computed securely through MPC; the problem howeverdemain. Section V is devoted to the analysis of the upper
that MPC protocols are extremely complex since they mdypunds on the encrypted domain representation for differen
require that several interactive rounds are carried outrgmoDFT implementations, whereas Section VI takes into account
the players to compute the output Bf guantization errors. In Section VII, we derive the compthexi

In this paper we focus on non-interactive s.p.e.d. Specdf different s.p.e.d. FFT algorithms (namely radix-2 andixa
ically we focus on the representation problems that muétFFT). Finally, in Section VIII we propose some examples
be solved in order to exploit homomorphic encryption foof s.p.e.d. FFT designs, while some concluding remarks are

processing encrypted signals. given in Section IX.

The classical ways to represent signals are through floating
point or fixed point arithmetic. Unfortunately both floating Il. ENCRYTPTED DOMAIN - DISCRETEFOURIER
point and fixed point arithmetic are not suited for implemen- TRANSFORM (E-DFT)

tation in the encrypted domain through homomorphic encryp-The DFT of a sequence(n) is defined as:
tion. As a matter of fact adding two floating point numbers

. . . . M-—1
requires much more complex operations than simple addition B nk B
first the numbers must be expressed in a form having the same X(k) = Z:O (W™, k=0,1,...,M—1 @

exponent, then the significands must be added and then the
exponent adjusted so that the significand of the result staysvhere W = e=727/M andz(n) is a finite duration sequence
the [0.1, 1) range. Clearly these operations can not beechrrivith length M. Among the appealing properties of the above
out in the encrypted domain by relying on homomorphittansform one is that it can be implemented via fast algorith
encryption only, but some interactive protocol is requifgd noted as fast Fourier transforms (FFTs).
Similar considerations hold for fixed point arithmetic, wiae ~ We will consider a scenario in which the transform proces-
after each addition (multiplication) the resulting numbaust sor is fed with a sample-wise encrypted version of the input
be truncated to avoid overflow and underflow ertors vector, that is
In this paper we focus on the above representation problem
in the frarr)ntfwork of DFT/FFT computati(?n in the enc?ypted Bl = (Ele(O)), B}, Ble(M = 1)) ®)
domain. In fact, DFT and FFT are very popular signal prdn order to make possible linear computations on encrypted
cessing tools, and hence it is very likely that they will havealues, we will assume that the chosen cryptosystemois
to be implemented in s.p.e.d. applications. This is the cas®morphicwith respect to the addition, i.e., there exists an
for instance of a pattern recognition module operating dn sgperatore(-, -) such that
of frequency coefficients, a frequency-domain watermaykin
system embedding the watermark in the encrypted domain Dl¢(Ela], B[] = a + b “)
[8]-[10], or a filtering operation carried out in the frequgn  With such a cryptosystem is indeed possible to add two
domairt. encrypted values without first decrypting them. Moreover, i
Specifically, we introduce a theoretical framework wherebg possible to multiply an encrypted value by a public intege
the signal representation problem can be analyzed anddsolwealue by repeatedly applying the operatgfr, -).
Several important issues are considered for the direct DFTAnother required property of the cryptosystem is that it
the radix-2, and the radix-4 fast Fourier algorithms, idahg should beprobabilistic or semantically securethat is, given
the error analysis and the maximum size of the sequence ttved encrypted values it should not be possible to decide
can be transformed. We also provide computational comiylexif they conceal the same value. This is fundamental, since
analyses and comparisons. The results show that the radithd alphabet to which the input samples belong is usually
FFT is best suited for an encrypted domain implementation limited, and a non-semantically secure cryptosystem would
the proposed scenarios. disclose a great amount of information about the statistica
Despite the focus of the paper is on DFT/FFT implementdistribution of the input signal. A widely known example of
tion, the theoretical framework we developed is a very ganel cryptosystem fulfilling both the above requirements is the
one and can be used in a wide variety of situations. Paillier cryptosystem [11], for which the operatof:, -) is a
The rest of this paper is organized as follows. In Secaodular multiplication.
tion 1l the e-DFT (encrypted-DFT) is defined and the related Since the DFT transform coefficients are public, the expres-
representation problem introduced. Section Il reviews'ao sion in (2) can be computed on an encrypted input vector by
properties of homomorphic and probabilistic cryptosystenmelying on the homomorphic property, as will be shown in
and gives a summary of Paillier cryptosystem. In Section \&ection IV. As we already mentioned, when the above idea is
we introduce a suitable signal representation for the gxtedy applied in practice some issues need to be addressed.
First of all, both the input samples and the DFT coefficients
1Given the current state of art in homomorphic encryption thero way  naed to be represented as integer values. Since many ptactic
to compare or threshold two encrypted numbers. At the same tisuetirgy . o
to MPC at this low level is unacceptably complex. homomorphic cryptosystems (e.g., Paillier) are based ot+mo
2It could be argued that when the DFT module is either at therioégy ~ ular operations on a finite field/ring, the inputén) and the
or-at-the.end.of the processing,chain;the DET-could be apphiehe signal output valuesy(n) need to be correctly represented as integers
by the signal owner itself. However, this is not the case & ©OFT is a ) . . “
on an appropriate finite field. Here, by “correctly represdht

step of a much more complex processing chain, where the DFT ledfp
intermediate data. we mean that the actual value of a sample should always be
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recoverable from its finite field representation. For examipl possible to perform divisions, since this operation coelad
the case we are working dhy, the set of integers modully, to non integer values.
for each sample we should haid < (N — 1)/2; otherwise, = Another feature that we need is that the encryption scheme
its magnitude will be lost due to the modulé operations.  does not encrypt two equal plain texts into the same cipher
Secondly, FFT like algorithms should be applicable also text. More generally, given two encrypted values it should
the encrypted domain, thus permitting to achieve the samet be computationally feasible to decide if they conceal th
computation savings achievable in the plain domain. same value or not. For this purpose, it is possible to define
In the sequel, we will present a theoretical framewor scheme where the encryption functiéy is a function of
wherein the above issues can be cast and solved. A conventesth the secret message and a random parameter such
signal representation for s.p.e.d. will be proposed, atigw that if »; # ro no adversary can distinguisB,;(m1,71)
us to define both a s.p.e.d. DFT and a s.p.e.d. FFT. We wibm E,;(mo,r2), for any two secret messages;,ms.
analyze the quantization error introduced by the s.p.ed. iLet ¢; = E,;(m,r1) and co = Ep,(m,rs), for a correct
plementation and the maximum size of the sequence that ¢whavior the scheme has to be designed in such a way that
be transformed. Moreover, we will provide a computationd),,(c;) = Ds(c2) = m, that is the decryption phase is
complexity analysis, taking into account the requiremeits deterministic, not depending on the random parameteh

different s.p.e.d. scenarios. scheme that satisfies the above property is commonly referre
to as probabilistic [3] or semantically secure.
[1l. HOMOMORPHIC AND PROBABILISTIC Luckily, encryption schemes that satisfy both the homomor-
CRYPTOSYSTEMS phic and probabilistic properties detailed above do existe

One tool for signal processing in the encrypted domain @§ the most known homomorphic and probabilistic schemes
represented by cryptosystems that allow to carry out sorisethe one presented by Paillier in [11], and later modified by
basic algebraic operations on encrypted data by tranglatilamgard and Jurik in [12].
them into corresponding operations in the plaintext domain
The concept of pr_ivacy homomorphism was firs_t intro_duced k%Y Paillier Cryptosystem
Rivest et. al. [2]: in this paper, the authors define privaoy h
momorphisms as encryption functions which permit enciypte The cryptosystem described in [11], usually referred to
data to be operated on without preliminary decryption of trs Paillier cryptosystem, is based on the problem to decide
operands. whether a number is ai-th residue modulaVv2. This prob-

For an exact definition of a homomorphic cryptosysteniem is believed to be computationally hard in the cryptogsep
let us first introduce some notations: given a set of possiiemmunity, and is linked to the hardness to factoizeif V
plain textsM, a set of cipher text§ and a key paifpk, sk} IS the product of two large primes. For a complete descrptio
(public key and secret key), a public key encryption schengé the Paillier cryptosystem we refer to the original paper
is a couple of functions?,;, : M — C, Dy, : C — M such [11]. Here, we simply give the enc_ryption and_the decryption
that, given a plaintextn € M, D,.(E,.(m)) =m and such Procedures. The notation we use is the classic one, #ith
that, given a cipher text € C, it is computationally unfeasible the set of the integer numbers moduto, and Z3, the set
to determinem such thatE,;.(m) = ¢, without knowing the of invertible elements moduld/, i.e. all the integer numbers
secret keysk. modulo N that are relatively prime withv.

According to the correspondence between the operationl) Set-up: selectp, g big primes. The private key is the
in the ciphertext domain and the operation in the plainte}@ast common multiple ofp — 1,¢ — 1), denoted as\ =
domain, a cryptosystem can be additively homomorphic érm(p — 1, —1). Let N = pg andg in Z3, an element of
multiplicatively homomorphic: in this paper, we will focos ordeP aN for somea # 0 (9 = N +1 is usually a convenient
the former. choice).(N, g) is the public key.

An additively homomorphic cryptosystem allows to map 2) Encryption: let m < N be the plaintext, and < N a
an addition in the plaintext domain to an operation in theandom value. The encryptianof m is:
ciphertext domain, that usually is a multiplication. Given

— . m, N 2
two plaintextsm; andms, the following equalities are then ¢ = Epr(m,r) = g™r" mod N

satisfied: 3) Decryption: let ¢ < N2 be the ciphertext. The plaintext
Dar(Ep(my) - Epp(ma)) = my + my (5) ™ hidden inc is:
L(c* mod N?)
and, as a consequence, — == =
m = Dg(c) L(g" mod N?) mod N
D (Epe(m)®) = am (6)

whereL(z) = 1. From the above equations, we can easily

verify that the Paillier cryptosystem is additively homamo

D (Epr(my) - Epk(mg)_l) =mj — Ma. (7) phic, since Epy(my,r1)Epr(ma,r) = gt (ryrg)N =

. . Epg + ma, .
Additivelyshomomorphicieryptosystems allow to perform in * e(my+ma,irs)

t_he enc_rypted domain additions, subtractions and m_ui_tipli 3The order of an integes modulo N is the smallest positive integér
tions with a known (non-encrypted) value. However, it is naiuch thata* =1 mod N.

whereq is a public integer and
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IV. SIGNAL MODEL FOR THEENCRYPTED DOMAIN For example, if we use (12) the DFT in the encrypted domain

Let us consider a signal(n) € C, with z(n) = zr(n) + can be evaluated as

jxr(n), zr € R. In the following, we will assume that the C(nk)
signal is bounded in amplitude, i.@z%(n)| < 1, from which H Els (1)
|$R,I(n>| <L M—1

In order to process(n) in the encrypted domain, the signal { H Elsp(n CR nk)E[SI(n)}fC'I(nk)’ H E[SR(H)]CI(
values must be approximated by suitable integers. This is o
accomplished by the following quantization process (14)

s(n) = [Quz(n)] = [Qrzr(n)|+i[Qizr(n)] = sg(n)+jsy(n)for k=0,1,.... M —1.

(8)
where[-] is the rounding function an@); is a suitable scaling V. UPPERBOUNDS AND MAGNITUDE REQUIREMENTS
factor. Fore the sake of simplicity, we will assume tgatisan ~ The computation of the DFT using (11) requires two
integer. Based on the properties i), the quantized signal Problems to be tackled. The first one is that there will be
will satisfy —Q1 < sg,1(n) < Q1. a scaling factor betwee§(k) and the desired valug (k).

In the following, we will consider the encryption ofn) The second one is that, in order to implement (11) using a
as the separate encryption of batfy(n) and s;(n), i.e., Cryptosystem which encrypts integers modulg one must
E[s(n)] = {E[sr(n)], E[s;(n)]}. Hence, if the cryptosystem ensure that the one-to-one mapping in (9) still holdsS6k)
encrypts integers modul®/ we need a one-to-one mappingiod N. Hence, according to the proposed model, one has to
betweenzg ;(n) = sg.s(n) mod N andsg (n), so that we find anupper boundQs on S(k) such that|Sg i (k)| < @s,
can always recover the correct valuesaf;(n) from zp ;(n). a@nd verify thatV > 2Qs + 1.

This can be achieved by imposing > 2Q; + 1, so that In the following we will show that, irrespective of the DFT
implementation,S(k) can always be expressed as
ZR_[(TL) if ZR[(’I'L)<N/2
= ' ' 9 S(k) = KX(k)+es(k 15
sn.s(n) {zRJ(n)—N oo o Nz O (k) = KX (k) + es (k) (15)

where K is a scale factor depending on the particular imple-
The coefficientd¥™* in (2) can be quantized using the saméentation, whereass (k) takes into account the propagation
strategy as above. In particular, we define of the quantization error.
Based on the above equation, the desired DFT output can
Clu) = [QW"] = [Q2 cos(2mu/M)|—j[Q2 sin(2mu/M)| = Ge(obtaiéd@st (k) = S(k)/K. As to the upper bound, we
(10) have|S(k)| < K|X (k)| + |es(k)|. Hence, for allk we obtain
where@), is the DFT coefficient scaling factor. Thanks to the

A
properties ofi¥’, we have—Qy < Cr r(u) < Qs. |S(k)| < [MK + €s,maz] = Qs (16)
Based on the definitions above, the integer approximatiofherees ... is a suitable upper bound eg (k) and we used
of the DFT is defined as | X (k)| < M.

The value ofK andeg ,q, depends on the scaling factors
- Z C(nk)s(n), k=0,1,...,M —1. (11) Q1 and@2 and on the particular implementation of the DFT.
ne0 These issues will be discussed in the following sections.

Since the above equation requires only integer multipbeet A. Direct Computation

and integer additions, it can be evaluated in the encrypted

domain by relying on homomorphic properties. However, Let us express the quantized samples in (8) and the quan-
the s.p.e.d. implementation of both complex additions atiged coefficients in (10) as(n) = Qiz(n) + e,(n) and
complex multiplications should be considered. The implé=(v) = Q2W"+ew (u), respectively, where, (n) andey (u)
mentation of a complex addition is trivial. As to a complesare the quantization errors. If the DFT is computed directly
multiplication, two implementations can be considered],[13PY applying (11), then we have

either requiring four real multiplications and two real &dd M—1
tions, sC = {SRCR — s571Cr,srCr + S[CR}, or three real S(k) =(Q1Q2X +Z Q1$ GW nk) + QQES( )Wnk +63(n)€‘
multiplications and three real additions = {(sg+s;)Cr— n=0

. 17)
s1(Cr+Cr),(sr+s1)Cr—sr(Cr—Cr)}. If the inputs are (
encrypted with the Paillier cryptosystem, when implemdnteghe s(,jcalmg fact(t))r in (15) is thle? ; Q1Q2hAS to the Upp(?rh
in the encrypted domain such implementations become oun ,QS given by equation (16), due to the properties of the
rounding function,|e, 1w (n)] < 1/v/2. Hence|s(n)| < Q1 +

E[s](cl) 2 {E[sp]°mE[s;)~C", E[sg] " E[s;]°*}  (12) 1/v2, |C(u)| < Q2+ 1/v/2 and, after simple manipulations,

E[s)%) 2 {E[Z)E[sr]"“*, E[Z)E[s/) -} (13) IS(k)| < M (Qle + f?} + f?; + ) (18)
where E[Z] = (E[sg]E[s:))<%, € = Cr + Cr, C_ = from which we deriveQs = MQ1Q2 + |Q1/vV2+ Qa2/V2+

Cr — C; and all computations are carried out modW\¢. 1/2].
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1) Real-Valued Signalsin the case of the DFT of a real- As to the upper bound analysis, the two branches of the
valued signal, the direct DFT computation can be expressaatterfly are equivalent. Without loss of generality, letcas-

as sider the first branch. If we expre§§") (ko) = K X (ko) +
M—1 M—1 eg)(kg), then we have
| (19) (® u (0
From the properties of botk(n) and C ;(u), it is evident + Q2 (65 (ko) + W'eg (kl)) (24)
that |s(n)Cr.(u)] < Q1Q2. Therefore, both the real and +EOXO (ke (u) +eg)(k1)ew(u)

the imaginary part of the integer DFT values will satisfy
|Sr.1(k)| < Qs = MQ1Q». This upper bound is lower thanfrom which we derive the following recursive relations
in the complex-valued case. However, in the case of a FFT D) —0 KO (25)
algorithm this applies only for the first stages, since a gene 2
stage of the FFT will consider a vector of complex valued 6(5”1)(1«0) =9 (eg)(ko) + W“e(st)(kl))
samples. It is also worth noting that real-valued signaés ar ) v (0) )
usually processed by means of a half-length complex FFT + KXY (k1 )ew (u) + g (k) ew (u).
[14], sinpe this Iead; to a sensible reduction of the com’rg@ex At the first stageS(© (n) = s(it) = Q12(f) + €, (), where
Hence, in the following only the complex-valued case will b jngicatesy in bit reverse order, so that the recursion starts
considered. S . with K(© = @, and e (ko) = e, (ko). By using the initial

2) Bounds on Complex Multiplicationsthe bound in (18) conditions in (26), it is easy to derive the scale factofas:
does not take into account the intermediate computations pfv) — ¢, y.
a complex multiplication. This is not a problem in the case as tg the evaluation of the final upper bound, we consider
of (12), since|sg,Cr1| < |sC|, that is, the intermediate g equivalent recursive relation on an upper bound of the
values are bounded by the final value. However, in the caggantization error represented in (26), given as
of (13) we have|sgr + s;| < |s|v/2 and |Cr + C7| < V2, )
i.e., the intermediate values may exceed the final values. In |€(t+1)| < <2Q2 + 1) |€(t)| + LK(t). 27)
order to cope with this behavior, the bound in (18) should 50 V2) 52
be multiplied by a factorn/2 whenever (13) is used. For theBy using the initial condition|e(59)| < % in (27, the upper

sake of simplicity, the upper bounds in the following seasio he final o
will be derived under the hypothesis that (12) is used. Theund on the final quantization error can be expressed as

(26)

corresponding upper bounds in the case of (13) can be otjtaine( ) 1 1\? ¥=lov—1- - 1\!

by multiplying by v/2. €5 <(2Q2+>+ QQ”(2Q2+)

y multiplying by es’1< 5 ﬂ;\ElQ 7%
(28)

B. Decimation in Time Radix-2 FFT However, the above upper bound does not take into account the

properties of the twiggle factofd *, which in particular cases
may be quantized with smaller quantization errors than the
upper boundey | < 1/+/2 or even without any quantization
error. In particular, at the first stage we ha¥é' = 1, whereas

at the second stage we hai#é* = {1, j}. In both cases, no
integer multiplication is required, and the butterflies dan

This algorithm is applied whef/ = 2” and allows the DFT
to be computed inv stages each requirint//2 complex mul-
tiplications. At each stage, a pair of coefficients is olgdias
a linear combination of the corresponding pair of coeffitsen
computed at the previous stage, using the followlnugterfly

structure modified so that no scaling factor is introduced. Therefore,
(2) _ . . . .
X(t“)(ko) _ X(t)(ko) n W“X(“(kl) (20) ]{;Ctor_asQ[; in;j{(?glfsql)ngcggg), it is easy to derive the scale
1 u - — Wl -
X )(kl) = X(t)(k’O) -w X(t)(kl) (21) As to the upper bound, in the case of the first two stages the

L L t+1 O o
where the indexesy, k1 and the exponent depend on the SXPression in (27) simplifies 48y .).‘ §(22)|6(S)|' sinceew =
particular stage [15]. The computation of the above buyterﬁ)'_He”C%) by using as initial conditiojag”| < 4/v2 in @7
can be performed in the encrypted domain by applying t&ince|es’| < 1/v2), the upper bound on the quantization

proposed model, yielding error can be expressed as
v—2
ST (ko) = Q25U (ko) + C(w)SV (k1)  (22) W] <— <2Q2 + 1)
SED(k) = Q28Y (ko) — Cu)SW (k). (23) V2 [ V2
v—3 2V—1—l s 1 l
Note that the multiplication byy, is required in order to add + Z 7521@2 <2Q2 + \/§> = €S,R2,maz;, V>
1=0

(or subtract) integers which are related to the correspandi
complexucoefficientsubysthensamenscale factor. Hence, the
integer implementation of the FFT algorithm requirdé from which we derive the final upper bound 6iik) asQs =
integer multiplications at each stage. MQ1Q5 2 + |€s.r2.maz ] -

(29)
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C. Decimation in Time Radix-4 FFT Although ey (u) is deterministic, this will produce a simple

This algorithm can be employed whel/ = 4# and e€Stimate of the quantization noise. _
allows the DFT to be computed in stages each requiring AS 0 the input signal, its NSR can be estimated as

3M/4 complex multiplications. The rationale of the radix-4 gg
algorithm is that an\/-point DFT can be evaluated as a linear n= 252 (35)

combination of fourM /4-point DFTs. Using this strategy, o _
at each stage four new coefficients are obtained as a linddiereo; |nd|'cates the signal power. '
combination of four coefficients computed at the previous !f We consider the DFT/FFT computation, the output NSR

stage, using the followingadix-4 butterfly[16] can be estimated as
3 T (36)
XD (k) =3 XO (k)W ()", 1=0,...,3. (30) 7T K2Mo?
1=0

where o2 is the variance ofeg(k). In the case of the
Without loss of generality, the upper bound can be evaluatdilect DFT computation, by relying on equation (17) and
by considering the integer version of the first branch in theeglecting the terms,(n)ew (nk), we can estimater?. ~

butterfly, that is MQ3olofy,, + MQ30;. Hence, it is easy to derive
S (ko) = Q28™ (ko) +C (1) S (k1) +C(2u) S™ (ko) +C (3u) S (k3). . o
(31) np =1+ 0z (37)
2

By using the same model as with the radix-2 case, the

- - . . In the case of a radix-2 FFT, the variance of the error at
following recursive relations can be derived

the tth stage can be recursively approximated by relying on

KA+ :QQK(Q (32) equation (26) as
(t+1) 3N L0, 24 02 & 2Q20%,, + 2t0202, (K®)2, (38)
€ <(4Qy + =) |W | +3-_K®, 33 LG+ 20 () zTW,q
)< (100 + 5 ) 1)1+ 3 (39 g =280l + oLk 2
Moreover, at the first stage of the radix-4 FFT algorithrt = If ‘we set the initial conditions T = 4oy and
1, so that the recursion begins witi() = @, and|e{)| < K® = Q,, then we haves? = 2”@3(”_2)03 + (v —
4/V2. The scale factor is given a& = K = QiQy™",  2)2v~1020%, Q2Q3" ). Therefore, the NSR can be ex-
whereas the quantization error upper bound is pressed as ’
4 3 \"! 9 o2
W] <— <4Q2 + ) Firg = Y= 2TWa
s V2 NG Nr2 =N+ 5 02 (39)

1—2
— 4! pi—2—1 3 Finally, in the case of a radix-4 FFT the variance of the

l
+ — 4 + =€ mazx . . .
; V2 AR ( @ \/i) S.f, error at thetth stage can be recursively approximated in a
’ (34) similar way as

from which we derive the upper bound a(k) as Qs = Uism) ~ 4Q§Uf<st> +3-4lo2ogy (K1) (40)

MQIQM_I + €S,R4,mazx |- . .. .

The Earaméters deteerining the upper bounds for the d2d. since the initial conditions a“fg) = 4oj and K =

ferent DFT implementations are summarized in Table I. ¢, the error at the last staged§, = 4MQ§(H*1)03 +3(u—
)4+~ 1o20%, Q3Q3" . Therefore, the NSR is given by
VI. ERRORANALYSIS )

The effects of finite precision arithmetic on DFT/FFT com- TRe =1 + 3u—1) UWQ’q.
putation have been extensively investigated in the liteeat 4 Q3
[17]-[19]. However, the encrypted domain implementatién o
the DFT introduces some important differences with resmectA- Comparison with Plaintext Implementation
the classical fixed point case. Since there is no rescalitey af Since the value of);, and hence;, will be fixed by the
multiplication (as we said we can not rescale the encryptedoperties of the input signal, the above formulas permit to
values due to the limited set of operations made available byaluate the degradation introduced on the encrypted DFT
homomorphic encryption), there is no computational noisegefficients as a function ap,. A fair design criterion could
which is one of the most relevant noise sources in fixed poibé that of choosing a value a, which yields a similar
implementations. Hence, the error introduced by the pregposdegradation with respect to that introduced by a plainté&xt F
DFT/FFT is only due to the quantization of the twiddle fastor implementation.

In order to estimate the overall quantization error on the In the following, comparisons will be made using a plaintext
DETwaluesythenoise=to=signabration(NSR) will be evahahat radix-2 FFT. Considering other plaintext FFTs yields samnil
We will assume that botb;(n) andeyw (u) are i.i.d. variables results. According to the way a plaintext FFT is implemented
with zero mean and varianceg and a?M o respectively. two cases need to be analyzed:

(41)
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TABLE |
SCALING FACTOR K AND UPPER BOUND(Q g FOR DIFFERENT SP.E.D. DFT IMPLEMENTATIONS.

| x| Qs |
Direct Q1Q2 MQ1Q2 + |Q1/V2+ Q2/V2 +1/2)
v—2 v—1— T
DIT radix-2 (M =2") | Q1Q57% | MQ1Qy *+ | 75 (2622 + %) _ +305 %QlQ?‘H (2Q2 + %) lJ
DIT radix-4 (M = 4) | QuQ5™" | MQu@5™* + [ 5 (402 + 35)" + 500 * @14 (42 + 5 ) |

. L - . . TABLE Il
1) Fixed point implementationf a plaintext radix-2 FFT COMPUTATIONAL COMPLEXITY OF S.P.E.D. FFT ALGORITHMS: A

is implemented on a fixed point hardware with registers coMPLEX MULTIPLICATION IS IMPLEMENTED THROUGH FOUR REAL
having b, bits and scaling is performed at each stage, MULTIPLICATIONS.

an equivalent encrypted domain implementation shoulg

satisfy 77 — n < 4M - 2722 /302 [15], whereo? is the [ | radix-2 radix-4 DFT
power of the input signal, assumed white. If we assumg MES | 3Mlogy M —6M | {Mlogy M — 3 M An?
a uniformly distributed quantization error on the DFT|_ MMs | 3Mlogy M —2M | - Mlogy M — 5M | 4M* — 2M
coefficients, i.e.of;, , = 1/6, we have Mis | 38Mlogy M —4M | GMlogy M — S M 2M?
Oy - 2027V/273/2 DFT
Q2 > o /v — 2202 v/2-2 radix-2 FFT

1 )5/ . As a result, the complexity will be evaluated as the number
0p\/3v/2 —3-2027¥/275/2 radix-4 FFT  of modular exponentiations (ME), modular multiplications
(42) (MM), and modular inversions (MI) which are required for

where we have assumed= 2. As a consequence, thejmplementing the DFT/FFT algorithms in the encrypted do-
s.p.e.d. implementation will require in the worst casgain.

ng = log, Q2 =~ ba—v/2+0.5log, v bits for quantizing

. . ; . The DFT/FFT algorithms are based on complex-valued
the twiddle factors, i.e., we save approximate}2 bits g P

ith lai fixed point imol > arithmetic. Hence, the complexity of a complex addition, a
with respect (o a plaintext fixed point imp ementat'_on'complex subtraction and a complex multiplication have to be
Floatlng' point lm.plementatlar.un the case qf a pl'alr?- translated into ME, MM, and MI. As to a s.p.e.d. complex
text radix-2 '.:FT |mplementat|on ona floating pOIntIngaddition, it always requires two MMs, while the complexity

hardwa_re gsmgfg P'ts for the fra;:}mnal part, the NSR of a complex subtraction is two MMs and two Mis. As to a

bound is given by —n < 2v- 2722 /3 [15]. Hence .0 hjey multiplication, we consider the two implementasio

2)

/1/4v - 2> DET in (12)-(13), either requiring four MEs, two MMs and one M,
> /(0 —9Y/] - 2f> radix-2 EET (43) ©f three ME, three MMs and two Mis. Moreover, if we assume
@22 (g 5 )/31/ 65 . 9f: dix-4 FFT (43) that the sign of the multipliers is uniformly distributedther
(3v/2 - 3)/16v - radix- ' two additional Mis or one and a half additional Mis should

In this case, the quantization of the twiddle factors in thige considered on the average. Finally, if a complex value is
s.p.e.d. implementation requires approximately the sarmmuiltiplied by a real value (rescaled) the complexity is alsva
number of bits as the fractional part of the floating poirttvo MES and one MI on the average.
registers. The complexity of the direct DFT is simply /2 complex
multiplications andM (M — 1) complex additions. The com-
VIl. COMPLEXITY ANALYSIS plexity of radix-2 can be derived as follows. Each stage ef th
The complexity of the proposed DFT implementation in theadix-2 FFT, except the first two stages, requikés2 complex
encrypted domain depends on several parameters which @tdtiplications plus)M/2 rescalings of complex values when
related to the used cryptosystem, its homomorphic pragertiimplemented in the encrypted domain. Moreover, each stage
to the input signal, and the desired NSR level. requires alsoM /2 complex additions and\//2 complex
For the sake of simplicity, in this paper we will assumé&ubtractions. A similar procedure can be used to derive the
that a Paillier cryptosystem or one of its extensions arel.usgomplexity of the encrypted radix-4 FFT. In this case each
Hence, each addition between plaintexts will be translated Stage, except the first stage, requit2e /4 complex multi-
a modular multiplication between cyphertexts, and each malications plus) /4 rescalings of complex values. Moreover,
tiplication between plaintexts will be translated into adutar €ach radix-4 stage requires ald6 complex additions and/
exponentiation of a cyphertexts to a plaintext. Moreover, £0mplex subtractions. The complexity results for the déffe
encrypted subtraction requires a modular division, whigh algorithms in terms of MEs, MMs and MIs are summarized
usually more complex than a modular multiplication [20]in Tables Il and III.
[21]. In the following, we will consider an implementation A remark about the encrypted DFT/FFT complexity regards
ofrsubtractionsrrequiringronesmodularsmultiplication amteo the different weight of the different modular operations. |
modular inversion. The same holds for exponentiations t@ = [log, Q2], @ modular exponentiation will require on
negative exponents, usually implemented@s®) ' mod n. the averageén,/2 modular multiplications. Hence, in several
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TABLE Il

COMPUTATIONAL COMPLEXITY OF S.P.E.D. FFT ALGORITHMS: A « Fixed point inputsif the input signal is quantized using
COMPLEX MULTIPLICATION IS IMPLEMENTED THROUGH THREE REAL by bits, its values can be directly mapped onto integer
MULTIPLICATIONS. values in the interva]-2>1—1 2011 1], so that we can
- - assumen; = by — 1;
| ‘ radix-2 radix-4 oFr_ |, Floating point inputs in order to preserve the whole
MEs | SMlog, M —5M | % Mlogy M — 3 M 3Mm2 dynamic of the normalized floating point representation,
MMs | §Mlogy M —3M | 2Mlogy M — M | 5M* —2M one should be able to represent values fraar 2~ —2
Mis | 2Mlogy M — M | 3xMlogy M — 22 M 3 M? to 22" wheree; is the number of bit of the exponent.

Unless some information about the properties of the input
signal are known, this requires, = 2“1 — 2;

practical cases the cost of the modular multiplications is e Fixed point implementatiorby usinge, <1 andv > 3,
negligible. This may not hold true in the case of the modular a choice satisfying (42) for all implementations@s >
inversions, whose complexity is in general higher than that +/2v - 2°2=%/2-5/2 or, equivalently,n, > by — v/2 +
of a modular multiplication. Hence, the choice of the most (log, v)/2 — 2. If we assumer < 32, we can sehy =
convenient implementation between the four multiplicatio [be —v/2+1/2];
scheme and the three multiplication scheme will depend one Floating point implementatiana choice satisfying (43)
the actual implementation of a modular inversion/division for all implementations and all values ofis Q2 > %2f2,

When the modulus used by the cryptosystem remains the from whichng = fo — 1;
same independently of the implementation, the above esti-
mates can be directly compared and the results are similar
to the classical case. However, in order to maintain the same
value of V, the maximum allowable value @, is reduced One of the main problems of an implementation in the
in the case of the FFT algorithms. Since there can be somrcrypted domain is it§easibility. Consider a scenario in
applications in which this may not be acceptable becausewdfich a set of encrypted signals must undergo different
the requirements on the quantization noise, the analydiseof processing tasks. It is not realistic to adapt the parameter
overall complexity is strongly dependent on the actual esluof the cryptosystem according to the processing task, mainl
of Q; and Q5. because this would produce a huge amount of encrypted data,
and encrypting data with an homomorphic cryptosystem is
usually an expensive procedure. In such a scenario, it is
reasonable to assume that the signals are encrypted ortte, an

As shown in the previous sections, the choice of th#at each processing task employs the same set of encrypted
parameters of the DFT to be implemented in the encrypteidta. Therefore, each processing task must rely on an feasib
domain depends on several aspects, including the cortstraimplementation, i.e., an implementation satisfying thguiee-
imposed by the cryptosystem, the required SNR, and theents on the modulus.
complexity of the implementation. The aim of this section Given M = 2, @, and Q,, in order to ensure that no
is to provide design criteria which take into account th@rap-around occurs in the internal computations the madulu
different issues raised by the s.p.e.d. DFT. First, we wjll t of the cryptosystem must satisfy
to identify some typical scenarios that can be encountered
in practical applications. Therefore, we will show how the N>202"Q:1Q3 +§) +1 (44)

roposed analysis allows us to assess which s.p.e.d. DFT .
glggrithm is m)(;re suitable for a particular scenar?o. In th\é{here we can hgvez =1 (DFT), a = v 2 (radix-2) or
derivation of such criteria, the analysis made in the pmwioa = v/2 -1 (radix-4), ang can be o_btamed _from equation
sections has a crucial role, since it allows us to give geneﬁ 9)1 (.34) or (18). ConS|de£|ng F:IaCt'Cal choices @f and
rules for the choice of the s.p.e.d. DFT parameters, whidh w2’ itis safe to assume < 2(1Q3 —1/2, so that the above
apply also in more general scenarios. bound is satisfied by requiring

We will assume that each encrypted domain implementation np > v+ nq + ang + 3. (45)
fulfills the same requirements in terms of input and output
NSR as the plaintext version. Moreover, for the sake @&y using the above relationship, it is easy to assess whather
simplicity we will assume that botl®); and @), are powers particular FFT can be implemented by relying on the minimum
of two, i.e.,, Q1 = 2™ and Q2 = 2"2. Finally, we will modulus (and, hence, on a standard Paillier implemenfation
indicate the bit length of the modulus used by Paillier aar it requires an ad-hoc cryptosystem, e.g. as a function of
np = [logy, N|. For security reasons, recent applications According to the considered scenario, one can choose the
usually requiresip > 1024. convenient values ofi; and n, and substitute them into

In a non-encrypted domain (plaintext) implementation d#5) in order to assess which implementation is feasible. In
the DFT, different scenarios may arise, since both the splig. 1, we show the minimum required by four different
andrthestwiddlesfactorsrinsthesDET/FET implementation magcenarios characterized by fixed point inputs. If the nunaber
be either fixed point or floating point numbers. In our analysiFFT points is not very high (abov&'?), in all the scenarios
we will consider the following cases: the encrypted FFT can be implemented relying on the given

Implementation Constraints

VIll. PRACTICAL EXAMPLES
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Fig. 1. Minimum value ofnp = [log, N| as a function ofv = log, M Fig. 2. Minimum value of»p = [log, N as a function oi = log, M for

for four different scenarios considering fixed point inpwy DFT; b) radix-2 three different scenarios considering floating point ispaj) DFT; b) radix-2
FFT; c) radix-4 FFT. The straight line correspondsntp = 1024. f = 23  FFT, c) radix-4 FFT. The straight line correspondsntp = 1024. ¢; = 8

corresponds to IEEE 754 single precisigh,= 52 corresponds to IEEE 754 and f2 = 23 correspond to IEEE 754 single precisien, = 11 and fo = 52

correspond to IEEE 754 double precision.
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10

modulus. The only exception is given by the radix-2 imple- .| o , ]
mentations using high precision coefficients, which rezjain o radin4

extended modulus in order to cope with a number of points |
greater thar2!'®. In Fig. 2, we show the minimump required

by three different scenarios characterized by floating tpoin  10*
inputs. As in the previous example, the radix-2 impleméomat

with single precision inputs requires an extended modulus g w*
only when using double precision coefficients ahd> 2'6.
The situation is quite different in the case of double pieais 10
inputs: due to the very high number of bits used to represent
the input samples each implementation would require an
extended modulus. Note that the radix-4 implementation can
be used withnp = 1024 even if the number of DFT points
grows very large. However, abovel = 23° even the radix-

bit

10° ¥

4 implementation becomes no more feasible. Hence, if some ° * P e ® *
processing is required with/ > 23° (a possible example is @)

the processing of multidimensional signals) one has torteso :

to an alternative implementation (for example, the direeTp 107 | 2 s f

—— radix-4

at the cost of a greater complexity.

10*

B. Complexity Comparisons

Another important aspect of an encrypted domain im-
plementation is its computational complexity. When all the
implementations can be used relying on the same modulus
one can simply compare the number of modular operations 1}
required by the different approaches. However, also ardifiie
scenario can be taken into consideration, in which the medul 1%
of the cryptosystem is set to the minimum value required by a
particular implementation. Since the cost of a modular aper
tion depends on the modulus size [22], [23], a natural qoesti

10

10L

bit ops

is whether a fast algorithm requiring a higher modulus size * s 10 15 20 2 30

(i.e., the FFT) can be less efficient than a naive implemiamtat e
requiring a lower modulus size (i.e., the direct DFT). (b)
In order to make a complexity comparison, we made tHég. 3. Number of bit operations for three different s.p.&XT imple-
following simplifying assumptions: 1) the cost of the aigom e 50 Seoreis B SO B, = o ixedraseticionts
is dominated by the number of exponentiations; 2) the cqst,,, — 254, n, = 51 (corresponding to single precision floating point
of a modular exponentiation (moduly?,, = 227r.min) is inputs and double precision floating point coefficients).
modeled asCs = 1.5n2(2npmin)?k [24], Where s can be
interpreted as the cost of a bit operation (bit op).
Given the above hypotheses, the complexity of the differedgsuming four real multiplications for each complex miikip
implementations can be expressed as cation. Even if both FFTs are obliged to use a large modulus
size, their complexity is always well below that of a direct
Cprr = VDFT22V”2”;23.mm,DFT bit ops (46) DFT. In this scenario, the radix-4 algorithm is always thetbe

) one for what concerns the complexity, irrespective of thept

Cro = Yra(v — 2)2"n2np7mm)R2 bit ops 47 parameters.

Cr4 = Yra(v — 2)2V”2n;2>,mm,R4 bit ops (48)

IX. CONCLUDING REMARKS
Wherenp,min,DFT = (V +ny+ng+ 3); Np min,R2 = (V +

ny + ne(v —2) + 3) and np min,ra = (Vv + 11 + na(v — We have investigated the implementation of the DFT on a
2)/2 + 3), and the coefficientsprr, Yr2, Yr4, depend on vector of encrypted samples relying on the homomorphicprop
the implementation of the complex multiplications. It cam berties of the underlying cryptosystem. The relations betwe
demonstrated that the maximum allowable DFT size and the modulus of the
] ) cryptosystem, the DFT/FFT implementation, and the require
Cra < Crz < Cppr Vv 2 3; ¥na,np 2 0; (49) precision have been derived. The results have shown that
irrespective of the implementation of the complex multipl the noise introduced by a s.p.e.d. implementation is uguall
tions. A detailed proof is given in Appendix A. smaller than in a classical fixed point implementation and
As an example in the case| of a practical implementatiooomparable to a floating point one. Also the computational
the complexity of the proposed FFTs is compared in Fig. 8pmplexities of the different approaches have been dedved
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compared, taking into account the constraints of the slp.eof the domain, from whichg(v,n1,n2)|, _o < 1,

11

Yv >

implementation. We considered a first scenario in which ti3e VYni,no > 0.
available cryptosystem is fixed and a second scenario inlwhic As to the interior of the domain, let us consider the partial
the parameters of the cryptosystem may be adapted to tlegivative of (v, n1,no) with respect ton;: we have

requirements of the FFT. The results demonstrates that
radix-4 FFT is best suited for both scenarios.

tgg(ya ni, n2) o

3(v—=2)(v+ny+n2(v—2)+3)

Our approach gives useful design criteria for the implemen-
tation of s.p.e.d. modules and suggests several othersissue
be addressed in future research on s.p.e.d. topics. Faniest

n2(371/) <0,

onq v+ (v +nyg + ng + 3)3

K (vyn1,m2)

(52)

an interesting open question is the tradeoff between fisiasib sincer’(,n1,n2) > 0 on the given domain. Hence, also the
and complexity, i.e., the comparison between feasible bgxtrema of¢(v,n1,n,) lie on the boundary of the domain.
less efficient implementations and efficient but sometimddiis implies

unfeasible ones. Other topics needing further research¢ha
analysis of s.p.e.d. FFT algorithms having radix greatanth

four, the analysis of mixed radix and split radix algorithmsyhich demonstrates the lemma.

and the hardware issues in practical implementations.

o(v,n1,me) <1, Vv >3; Vni,ng >0

The proof of equation (49) follows from the above two

lemmas.

APPENDIX
PROOF OFEQUATION (49).

Consider the expressions of the complexity given in egs.
(46), (47), and (48). In the following, we will consider thase 1]
of four real multiplications for each complex multiplicati,
i.e., yprr = 24, Yo = 18, andvygs = 10.5. The case of
three real multiplications can be proved in a similar waye Th
following lemmas hold:

Lemma 1:Cgr4 < Cry Vv > 3; Vny,ng > 0;

Proof: This is immediately proved by inspecting equa-[3I
tions (47)-(48). [ ]

(2]

[4]
Lemma Z:CRQ < Cppr Vv > 3; an,ng >0;
Proof: Consider the functional 5
C
d(v,ny,ng) = 2oy 3; ni,ng > 0. (50)
Cprr

Clearly, ¢(v,n1,n2) > 0 on the given domain. Moreover, at [6]
the boundaries we have the following constraints:

(7]

lim ¢(Va ni, TLQ) =0;

3(v—2
lim ¢(v,ny,ng) = % <1, Yv>3; (8]
. 3(v—2)3
1 =——> <1, WWw>3; 9
im o(v,n1,mn2) T2 , Vv > [0
3
¢y, ma)l,—3 = o5 <1 [10]
3(v—-2)
¢(V, n1,n2)‘n2:0 = W < 1, Yv Z 3, [11]

As to the hyperplane; = 0, we have
3(v—2) (v+n(v—2)
2v+2 v+ne+3
Consider the partial derivative af(v, ny) with respect tons:
we have
8¢<V7 n2) _

817,2 o

(12]

- 3>2 = (v, n2).

(23]

(j)(l/, 7711,712)‘”1:0 =

(14]

Vv >3
[15]

3(v—2)(v+no(v—2)+3)
2V (v +ng +3)3

(2=9) >0,

Kk(v,n2)

(51) [8]
since x(,n2) > 0 on the domain of¢(v,n1,n2). Hence, 44
the maxima (and minima) of)(v,ny) lie on the boundary
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